114 research outputs found

    Rodent models of postherpetic neuralgia: How far have we reached?

    Get PDF
    BackgroundInduced by varicella zoster virus (VZV), postherpetic neuralgia (PHN) is one of the common complications of herpes zoster (HZ) with refractory pain. Animal models play pivotal roles in disclosing the pain mechanisms and developing effective treatments. However, only a few rodent models focus on the VZV-associated pain and PHN.ObjectiveTo summarize the establishment and characteristics of popular PHN rodent models, thus offer bases for the selection and improvement of PHN models.DesignIn this review, we retrospect two promising PHN rodent models, VZV-induced PHN model and HSV1-induced PHN model in terms of pain-related evaluations, their contributions to PHN pathogenesis and pharmacology.ResultsSignificant difference of two PHN models is the probability of virus proliferation; 2) Most commonly used pain evaluation of PHN model is mechanical allodynia, but pain-induced anxiety and other behaviours are worth noting; 3) From current PHN models, pain mechanisms involve changes in virus gene and host gene expression, neuroimmune–glia interactions and ion channels; 4) antiviral drugs and classical analgesics serve more on the acute stage of herpetic pain.ConclusionsDifferent PHN models assessed by various pain evaluations combine to fulfil more comprehensive understanding of PHN

    MiR-214 promotes renal fibrosis in diabetic nephropathy via targeting SOCS1

    Get PDF
    Purpose: To elucidate how miR-214 regulates the pathogenesis of diabetic nephropathy (DN). Methods: The extent of fibrosis in DN mice kidneys was examined using Masson’s staining. Quantitative polymerase chain reaction (qPCR) was used to determine the levels of miR-214. Dual luciferase reporter assay was used to identify the target of miR-214. The expression of fibrosis marker proteins of high glucose-stimulated NRK-52E cells transfected with miR-214 was determined using western blotting. Results: Fibrosis in renal tissue of DN mice was significantly increased and miR-214 was upregulated (p < 0.001). Suppressor of cytokine signaling 1 protein (SOCS1) was the target gene of miR-214, and overexpression of miR-214 promoted fibrosis (p < 0.05, p < 0.001). On the other hand, overexpression of SOCS1 inhibited this process, indicating that miR-214 promoted fibrosis via targeting SOCS1 (p < 0.001). Finally, inhibition of miR-214 c ameliorated renal fibrosis in DN mice (p < 0.01, p < 0.001). Conclusions: MiR-214 is upregulated in db/db DN mice kidney tissue; miR-214 regulates renal fibrosis in DN mice by targeting SOCS1

    Opportunistic Bits in Short-Packet Communications: A Finite Blocklength Perspective

    Get PDF
    In this paper, the concept of opportunistic bits (OBs) is developed in short-packet communications and investigated from a finite blocklength perspective. In the OB-based transmission, the data unit of a packet is divided into two parts: OBs and conventional bits (CBs). The OBs are not physically transmitted but used to indicate the index of the time slot (TS) when the packet containing CBs is transmitted. The loading of a bulk of OB-based packets into multiple TSs can be modelled as a Repeated Balls-into-Bins process with a multi-queue storage. If the bulk is not large enough, certain combination(s) of OBs will not appear, which leaves certain TS(s) empty and hence reduces the TS load efficiency. To evaluate the OB-based transmission performance, we formulate its maximal payload rate and TS load efficiency. With the aid of these two formulations, the energy gain, the goodput, and the latency of OB-based short-packet communications are derived and obtained in analytical forms. For achieving further insights, illustrative numerical results on the resource utilisation efficiency and the performance not only substantiate the advantages of the OB-based transmission over the conventional but also provide useful tools and specifications for its design in massive short-packet communications

    ClipCrop: Conditioned Cropping Driven by Vision-Language Model

    Full text link
    Image cropping has progressed tremendously under the data-driven paradigm. However, current approaches do not account for the intentions of the user, which is an issue especially when the composition of the input image is complex. Moreover, labeling of cropping data is costly and hence the amount of data is limited, leading to poor generalization performance of current algorithms in the wild. In this work, we take advantage of vision-language models as a foundation for creating robust and user-intentional cropping algorithms. By adapting a transformer decoder with a pre-trained CLIP-based detection model, OWL-ViT, we develop a method to perform cropping with a text or image query that reflects the user's intention as guidance. In addition, our pipeline design allows the model to learn text-conditioned aesthetic cropping with a small cropping dataset, while inheriting the open-vocabulary ability acquired from millions of text-image pairs. We validate our model through extensive experiments on existing datasets as well as a new cropping test set we compiled that is characterized by content ambiguity

    Retinoic Acid Induced Protein 14 (Rai14) is dispensable for mouse spermatogenesis

    Get PDF
    Background Retinoic Acid Induced Protein 14 (Rai14) is an evolutionarily conserved gene that is highly expressed in the testis. Previous experiments have reported that small interfering RNA (siRNA)-mediated gene knockdown (KD) of Rai14 in rat testis disrupted spermatid polarity and transport. Of note, a gene knockout (KO) model is considered the “gold standard” for in vivo assessment of crucial gene functions. Herein, we used CRISPR/Cas9-based gene editing to investigate the in vivo role of Rai14 in mouse testis. Methods Sperm concentration and motility were assayed using a computer-assisted sperm analysis (CASA) system. Histological and immunofluorescence (IF) staining and transmission electron microscopy (TEM) were used to visualize the effects of Rai14 KO in the testes and epididymides. Terminal deoxynucleotidyl transferase-dUTP nick-end labeling (TUNEL) was used to determine apoptotic cells. Gene transcript levels were calculated by real-time quantitative PCR. Results Rai14 KO in mice depicted normal fertility and complete spermatogenesis, which is in sharp contrast with the results reported previously in a Rai14 KD rat model. Sperm parameters and cellular apoptosis did not appear to differ between wild-type (WT) and KO group. Mechanistically, in contrast to the well-known role of Rai14 in modulating the dynamics of F-actin at the ectoplasmic specialization (ES) junction in the testis, morphological changes of ES junction exhibited no differences between Rai14 KO and WT testes. Moreover, the F-actin surrounded at the ES junction was also comparable between the two groups. Conclusion In summary, our study demonstrates that Rai14 is dispensable for mouse spermatogenesis and fertility. Although the results of this study were negative, the phenotypic information obtained herein provide an enhanced understanding of the role of Rai14 in the testis, and researchers may refer to these results to avoid conducting redundant experiments

    Graph Pattern Matching in GQL and SQL/PGQ

    Get PDF
    As graph databases become widespread, JTC1 -- the committee in joint charge of information technology standards for the International Organization for Standardization (ISO), and International Electrotechnical Commission (IEC) -- has approved a project to create GQL, a standard property graph query language. This complements a project to extend SQL with a new part, SQL/PGQ, which specifies how to define graph views over an SQL tabular schema, and to run read-only queries against them. Both projects have been assigned to the ISO/IEC JTC1 SC32 working group for Database Languages, WG3, which continues to maintain and enhance SQL as a whole. This common responsibility helps enforce a policy that the identical core of both PGQ and GQL is a graph pattern matching sub-language, here termed GPML. The WG3 design process is also analyzed by an academic working group, part of the Linked Data Benchmark Council (LDBC), whose task is to produce a formal semantics of these graph data languages, which complements their standard specifications. This paper, written by members of WG3 and LDBC, presents the key elements of the GPML of SQL/PGQ and GQL in advance of the publication of these new standards

    PG-Schema: Schemas for Property Graphs

    Get PDF
    Property graphs have reached a high level of maturity, witnessed by multiple robust graph database systems as well as the ongoing ISO standardization effort aiming at creating a new standard Graph Query Language (GQL). Yet, despite documented demand, schema support is limited both in existing systems and in the first version of the GQL Standard. It is anticipated that the second version of the GQL Standard will include a rich DDL. Aiming to inspire the development of GQL and enhance the capabilities of graph database systems, we propose PG-Schema, a simple yet powerful formalism for specifying property graph schemas. It features PG-Types with flexible type definitions supporting multi-inheritance, as well as expressive constraints based on the recently proposed PG-Keys formalism. We provide the formal syntax and semantics of PG-Schema, which meet principled design requirements grounded in contemporary property graph management scenarios, and offer a detailed comparison of its features with those of existing schema languages and graph database systems.Comment: 25 page

    The LDBC social network benchmark: Business intelligence workload

    Get PDF
    The Social Network Benchmark’s Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB BI advances the state-of-the art in synthetic and scalable analytical database benchmarks in many aspects. Its base is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world phenomena, whose value properties follow skewed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and (recursive) deletes. The query workload exploiting this skew and correlation is based on LDBC’s “choke point”-driven design methodology and will entice technical and scientific improvements in future (graph) database systems. SNB BI includes the first adoption of “parameter curation” in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and sustained concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Result – only audited results can use this trademarked term

    Characterizing the Particle Composition and Cloud Condensation Nuclei from Shipping Emission in Western Europe

    Get PDF
    Commercial shipping is considered as an important source of air pollution and cloud condensation nuclei (CCN). To assess the climatic and environmental impacts of shipping, detailed characterization of ship plumes near the point of emission and understanding of ship plume evolution further downwind are essential. This airborne measurement study presents the online characterization of particulate phase ship emissions in the region of Western Europe in 2019 prior to new international sulfur emission controls becoming enacted. More than 30 ships from both the sulfur emission control area (SECA) in the English Channel and the open sea (OS) are measured and compared. Ships within the SECA emitted much less sulfate (SO4) compared with those at OS. When shifted to a lower apparent fuel sulfur content (FSC) at similar engine loads, the peak of the fresh ship emitting the particle number size distribution shifted from around 60-80 nm in diameter to below 40 nm in diameter. The emission factors (EFs) of sulfate are predicted to decrease by around 94% after the 2020 regulation on ship sulfur emission in the open ocean. The EFs of refractory black carbon (rBC) and organic compounds (Org) do not appear to be directly affected by the lower sulfur contents. The total number concentration for condensation nuclei (CN) >2.5 nm and >0.1 ÎŒm are predicated to be reduced by 69 and 56%, respectively. Measured plume evolution results indicate that the S(IV) to S(VI) conversion rate was around 23.4% per hour at the beginning of plume evolution, and the CCN and CN >2.5 nm ratio increased with plume age primarily due to condensation and coagulation. We estimate that the new sulfur emission regulation will lead to a reduction of more than 80% in CCN from fresh ship emissions. The ship-emitted EFs results presented here will also inform emission inventories, policymaking, climate, and human health studies
    • 

    corecore